Question	Key	Marks	Guidance
1	В	1	
2	В	1	

OCR (A) Chemistry A-Level - Carboxylic Acids and Esters

Question	Key	Marks	Guidance
3	D	1	
4	Α	1	

PhysicsAndMathsTutor.com

	Question		A	nswer				Marks		Guidance
5	(a)	(i)	Burette readings					4		
			Final (reading)/cm ³	23.15	45.95	32.45	✓			Table not required
			Initial (reading)/cm ³	0.60	23.15	10.00				ALLOW initial reading before final reading
			Correct titration results readings, clearly labeled AND all readings record last figure either 0 or 5 Titres	ł						
			Titre/cm ³	22.55	22.80	22.45	✓			ALLOW ECF
			Correct subtractions to	obtain fina	al titres to	2 DP				
		 Units Units of cm³ for initial, final and titres ✓ 								ALLOW units with each value ALLOW brackets for units, i.e. (cm³)
			Mean titre • mean titre = $\frac{22.55 + 22}{2}$ i.e. using concordant (c			2.5 cm³ ✓				ALLOW ECF from incorrect concordant titres

Question	Answer	Marks	Guidance
(a) (ii)	ALLOW 3SF or more throughout IGNORE trailing zeroes, e.g. ALLOW 0.084 for 0.0840 \cdot	6	ALLOW ECF from incorrect mean titre in 4a(i) e.g. From 22.60 cm ³ (mean of all 3 titres in (i), $n(NaOH) = 1.8984 \times 10^{-3}$ (mol) ALLOW ECF from incorrect $n(NaOH)$ ALLOW ECF from incorrect $n(A)$ ALLOW ECF for alkyl group closest to calculated $M(alkyl \text{ group})$, e.g. for $M = 45$, ALLOW C_3H_7 (43) ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous IGNORE poor connectivity to OH groups Given in question
	*		Common error for 4 marks max 25.00 instead of 22.50 and scaling by \times 10 $2.10 \times 10^{-3} \times \rightarrow 2.10 \times 10^{-2} \checkmark \rightarrow 118.81 \checkmark \rightarrow 43.81 \checkmark \rightarrow C_3H_7 \checkmark$ 25.00 instead of 22.50 and scaling by $\times \frac{250}{22.50}$ $2.10 \times 10^{-3} \times \rightarrow 2.33 \times 10^{-2} \checkmark \rightarrow 106.93 \checkmark \rightarrow 31.93 \checkmark \rightarrow C_2H_5 \checkmark$ No structure with 2 chiral centres possible \times

Ques	tion	Answer	Marks	Guidance
(b)	(i)	Equation 2HOCH(R)COOH + Mg → (HOCH(R)COO) ₂ Mg + H ₂ Organic product ✓ Balance ✓ Type of reaction Redox ✓	3	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous ALLOW 2HOCH(R)COOH + Mg → 2HOCH(R)COO⁻ + Mg²⁺ + H₂ ALLOW multiples IGNORE poor connectivity to OH groups Given in question
(b)	(ii)	Equation 2HOCH(R)COOH R + 2H₂O Organic product ✓	3	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous ALLOW 1 mark of the 2 equation marks for formation of '3 ring' with balanced equation:
		Balance ✓ Type of reaction Condensation OR esterification ✓		ALLOW condensation polymerisation ALLOW addition—elimination IGNORE elimination IGNORE dehydration

Question	Answer	Marks	Guidance
(c) (i)	O- v	1	ALLOW brackets around structure with negative charge outside, i.e. ALLOW ring (Kekulé structure)
(c) (ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 1.61×10^{-3} award 2 marks $M = 418(.0) \text{ (g mol}^{-1}) \text{ OR } n(\text{Cr}) = 3.85 \times 10^{-6} \text{ (mol)} \checkmark$ Mass = $3.85 \times 10^{-6} \times 418.0 = 1.61 \times 10^{-3} \text{ g} \checkmark$	2	Note: $\frac{200 \times 10^{-6}}{52.0} = 3.85 \times 10^{-6}$ (at least 3 SF) ALLOW ECF from incorrect <i>M</i> OR <i>n</i> (Cr) ALLOW 3 SF up to calculator value correctly rounded
	Total	19	

	Questi	on	Answer	Marks	AO element	Guidance
6	(a)	(i)	ethyl 3-bromopropanoate ✓	1	AO1.2	ALLOW one word: ethyl3-bromopropanoate OR more words, e.g. ethyl 3-bromo propanoate IGNORE lack of hyphens, or addition of commas
		(ii)	Br HO	5	AO2.5 ×5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW in either order ALLOW any vertical bond to the OH group e.g. ALLOW OR OH OH OH OH OH OR OH OH OH

Question	Answer			Marks	AO element	Guidance
(iii)	hydrolysis ✓			1	AO1.1	IGNORE 'acid' and 'alkaline'' IGNORE nucleophilic substitution
(b)	Proton environment 1 2 3 4 Mark by colum Chemical shift Splitting patter	3.0–4.3 2.0–3.0 3.0–4.3 0.5–1.9 In : all 4 correct ✓	ect ✓✓	4	AO3.1 × 4	ALLOW δ values ± 0.2 ppm, as a range or a value within the range ALLOW integers for δ values e.g. 2 is equivalent to 2.0 ALLOW quadruplet for quartet ALLOW diagrams to show splitting pattern e.g. for triplet ALLOW splitting patterns shown as numbers i.e. '3' for triplet, '4' for quartet

Question	Answer	Marks	AO element	Guidance
(c)	Br OH OR Br OH OR OR OH OR OH OR OH OH OH	1	AO3.1	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
(d)	IF answer on answer line = 24018, AWARD 2 marks IF answer on answer line = 27600, AWARD 1 mark Relative mass of 200 molecules = $200 \times 138 = 27600 \checkmark$ M_r of polyester = $27600 - 199 \times 18 = 24018 \checkmark$	2	AO2.2 ×2	ALLOW ECF from incorrect M_r Alternative method based on repeat unit: M_r of 200 repeat units = 200 x 120 = 24000 \checkmark M_r of polymer = 24000 + 1 + 17 = 24018 \checkmark
(e) (i)*	Refer to marking instructions on page 4 of mark scheme	6	AO3.3	Indicative scientific points may include:

PhysicsAndMathsTutor.com

Question Answer	Marks	AO element	Guidance
for guidance on marking this question. Level 3 (5-6 marks) Correct calculation of the mass of (CH ₃) ₂ CHCHO. AND Planned synthesis includes oxidation of aldehyde and formation of ester C with most of the reagents and conditions identified and equations are mostly correct. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Calculation of the mass of (CH ₃) ₂ CHCHO is partly correct AND Planned synthesis includes oxidation of aldehyde and formation of ester C with some of the reagents and conditions identified OR Attempts to calculate mass of (CH ₃) ₂ CHCHO but makes little progress AND Planned synthesis includes oxidation of aldehyde and formation of ester C with most of the reagents and conditions identified and equations for each step are mostly correct There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.		×6	Calculation of mass of (CH ₃) ₂ CHCHO Using moles • $n(\text{ester}) = \frac{12.75}{102.0}$ = 0.125 (mol) • $n((\text{CH}_3)_2\text{CHCHO}) = 0.125 \times \frac{100}{40}$ = 0.3125 (mol) • Mass of (CH ₃) ₂ CHCHO = 72.0 × 0.3125 = 22.5 g Using mass • Theoretical mass of ester = 12.75 × $\frac{100}{40}$ = 31.875 (g) • Theoretical $n((\text{CH}_3)_2\text{CHCHO}) = \frac{31.875}{102}$ = 0.3125 (mol) • Mass of (CH ₃) ₂ CHCHO = 72.0 × 0.3125 = 22.5 g ALLOW small slip/rounding errors such as errors in M r e.g. use of 71 instead of 72 for (CH ₃) ₂ CHCHO Examples of partly correct calculations Mass = 3.60 g from 0.125 × $\frac{40}{100}$ × 72 (% yield inverted) Mass = 9.00 g from 0.125 × 72

Question	Answer	Marks	AO element	Guidance
	Calculation of the mass of (CH ₃) ₂ CHCHO is partly correct OR Planned synthesis includes both steps with some of the reagents and conditions identified OR Attempts equations for both steps but these may contain errors OR Describes one step of the synthesis with reagents, conditions and equation mostly correct There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.			Synthesis: reagents and conditions Step 1: Oxidation of aldehyde (CH ₃) ₂ CHCHO • Reagents: Cr ₂ O ₇ ²⁻ /H ⁺ • Conditions: reflux • Equation: (CH ₃) ₂ CHCHO + [O] → (CH ₃) ₂ CHCOOH Step 2: Formation of ester C • Reagents: methylpropanoic acid/(CH ₃) ₂ CHCOOH and methanol/CH ₃ OH • Conditions: acid (catalyst) reflux/heat • Equation: (CH ₃) ₂ CHCOOH + CH ₃ OH → (CH ₃) ₂ CHCOOCH ₃ + H ₂ O IGNORE attempts to form methanol in synthesis
(e) (ii)		2	AO2.7 × 2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous

PhysicsAndMathsTutor.com

Q	uestion	Answer	Marks	AO element	Guidance
		Y (43) = $(CH_3)_2CH^+ \checkmark$ Z (71) $(CH_3)_2CHCO^+ \checkmark$			ALLOW positive charge to be anywhere on the structure
		If '+' charge is missing/incorrect but the structures of both fragments are correct, award one mark			For Y and Z , ALLOW structure of a feasible fragment ion formed from ester C H H ₃ C C
					CH_3 O — CH_3 Ester C e.g. Y (43) = CH_3OC^+ Z (71) = $^+CCOOCH_3$
					ALLOW 1 mark if both correct ions are shown but in the incorrect columns
					ALLOW 1 mark for both correct ions if one or both have an 'end bond' ALLOW 1 mark if both ions are shown using correct
		Total	22		molecular formulae

Question	Answer	Marks	AO element	Guidance
7	Α	1	1.1	
8	Α	1	1.1	
9	D	1	1.2	

	Quest	ion	Answer	Marks	AO element	Guidance
10	(a)	(i)	Reagents K ₂ Cr ₂ O ₇ AND acid AND reflux ✓ Equation HO(CH ₂) ₄ OH + 4[O] → HOOC(CH ₂) ₂ COOH + 2H ₂ O	3	1.1	ALLOW Na ₂ Cr ₂ O ₇ OR Cr ₂ O ₇ ²⁻ ALLOW H ₂ SO ₄ OR HCI OR H ⁺ ALLOW words. e.g. 'acidified dichromate' ALLOW a small slip in formula for dichromate e.g KCr ₂ O ₇ ,
			[O] AND H₂O ✓		2.5	
			Correctly balanced equation ✓		2.6	
		(ii)	hydrogen/H bond $C - (CH_2)_2 - C$ $O - H \stackrel{\delta}{\bullet} O$ $O - H \stackrel{\delta}{\bullet} O$	2	2.1×2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW δ+ on H atoms of CH ₂ group
			OR OCC HO OCC HO			ALLOW H-bond for hydrogen bond ALLOW H bond between C=O and H ₂ O, i.e. O—H hydrogen/H bond H ^{δ+} O—H IF diagram is not labelled, ALLOW hydrogen bond/H bond from text

Question		Answer	Marks	AO element	Guidance
(b)	(i)	O O O O O O O O O O O O O O O O O O O	2	1.2 2.5	ALLOW the 'O' or C=O at either end, e.g. O O O O O O O O O O O O O O O O O O
	(ii)	the ester/ ester bond/ ester group /polyester can be broken down ✓ OR It can be hydrolysed ✓	1	3.2	IGNORE references to photodegradable 'Bond breaks' is not sufficient – no reference to ester bond
	(iii)	Socile in equation \checkmark Structure of diacyl dichloride \checkmark	3	1.1 1.2	ALLOW alternative approach using PCl₅ or PCl₃
		Complete balanced equation ✓		2.6	

Q	Question		Answer					Marks	AO element	Guidance
11	(a)		Во	nd angle	Name of	shape		2	1.2×2	
			120(·°)	Trigonal pla	nar				
			104-	-105(°)	Non-linear					For non-linear,
			Mark	by row OF	by column to	give hi	gher mark			ALLOW bent, v-shaped, angular IGNORE planar, 'not straight'
				2 bond an 2 shapes	gles correct √ correct √	/				
			OR i.e.	bond and	e AND shape	correct	in 1st row ✓			
				bond angl	e AND shape	correct	in 2nd row ✓			
	(b)		CH ₃ SO ₂ O	$H + H_2O =$	≥ CH ₃ SO ₂ O ⁻	+ H₃O+	✓	4	2.1×2	$ALLOW \rightarrow for \rightleftharpoons$
			A 1	B2	B1	A2	✓			ALLOW acid–base pairs labelled other way round. i.e. $CH_3SO_2OH + H_2O \rightleftharpoons CH_3SO_2O^- + H_3O^+$
					own using CH pairs by ECF		instead of			A2 B1 B2 A1 ALLOW small slip
					H ⇔CH3SO2	O- + CH				If ONE observe is recipaling from a consillation.
			A1	B2	B1		A2 ECF ✓			If ONE charge is missing from equilibrium. ALLOW ECF for acid—base pairs mark
			CH ₃ SO ₂ Ol	H dissociate	es more (than	CH₃CO	OH)			·
			OR CH ₃ SC	D ₂ OH is a s	tronger acid 🗸	/	,		3.1	IGNORE 'more acidic' Response needs strength/dissociation
			ORA in te	rms of CH2	COOH being	a weake	er acid			Response needs strength dissociation
			ONA III to	11113 01 01 130	o or rooming t	a weane	i dold			ALLOW maths explanation for final 2 marks, e.g.
			Student is	correct						$K_a(CH_3COOH) = 10^{-(4.76)} = 1.74 \times 10^{-5}$ $[H^+] = \sqrt{(1.74 \times 10^{-5}) \times 1)} = 4.17 \times 10^{-3}$
			AND (sulfonic a	cid has) lov	ver p <i>K</i> ₃/highe	r <i>K</i> a OR	greater [H+]			pH = $-\log 4.17 \times 10^{-3} = 2.38 \checkmark$
			ORA ✓				? [· ·]		3.2	
									0.2	$K_a(CH_3SO_2OH) = 10^{-(-1.90)} = 79.4$
										$[H^+] = \sqrt{(79.4) \times 1} = 8.91$ pH = $-\log 8.91 = -0.95 \checkmark$
										BOTH pH calcs subsumes 'Student is correct'

Question	Answer	Marks	AO element	Guidance
(c)	6 curly arrows correct \checkmark \checkmark \checkmark 4 curly arrows correct \checkmark \checkmark 3 curly arrows correct \checkmark \checkmark \checkmark 3 curly arrows correct \checkmark \checkmark \checkmark 3 curly arrows correct \checkmark	4	3.1×4	IGNORE any added charges OR dipoles. Marks solely for curly arrows IGNORE any curly arrows on bottom structures (not in boxes): O H ₃ C S O + HOCH ₃
	Total	10		